Optimal first-arrival times in Lévy flights with resetting

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal first-arrival times in Lévy flights with resetting.

We consider the diffusive motion of a particle performing a random walk with Lévy distributed jump lengths and subject to a resetting mechanism, bringing the walker to an initial position at uniformly distributed times. In the limit of an infinite number of steps and for long times, the process converges to superdiffusive motion with replenishment. We derive a formula for the mean first arrival...

متن کامل

Crime Modeling with Lévy Flights

The UCLA burglary hotspot model, introduced in [M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi, and L. B. Chayes, Math. Models Methods Appl. Sci., 18 (2008), pp. 1249–1267], models the formation of hotspots of criminal activity. In this paper, we extend the UCLA model to incorporate a more realistic model of human locomotion. The movement of the crimin...

متن کامل

Optimal search in interacting populations: Gaussian jumps versus Lévy flights.

We investigated the relationships between search efficiency, movement strategy, and nonlocal communication in the biological context of animal foraging. We considered situations where the members of a population of foragers perform either Gaussian jumps or Lévy flights, and show that the search time is minimized when communication among individuals occurs at intermediate ranges, independently o...

متن کامل

Slow Lévy flights.

Among Markovian processes, the hallmark of Lévy flights is superdiffusion, or faster-than-Brownian dynamics. Here we show that Lévy laws, as well as Gaussian distributions, can also be the limit distributions of processes with long-range memory that exhibit very slow diffusion, logarithmic in time. These processes are path dependent and anomalous motion emerges from frequent relocations to alre...

متن کامل

Lévy flights in random environments.

We consider Lévy flights characterized by the step index f in a quenched random force field. By means of a dynamic renormalization group analysis we find that the dynamic exponent z for f < 2 locks onto f , independent of dimension and independent of the presence of weak quenched disorder. The critical dimension, however, depends on the step index f for f < 2 and is given by dc = 2f − 2. For d ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2015

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.92.052127